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Abstract. T h e  zero-temperature limit of the dilute Barter-Wu model is studied in  the 
context of percolation theory. The percolation model describing the propagation of order 
is identified and shown to possess a non-local mechanism for the propagation of that order. 
A Monte Carlo study of this model is performed using the non-local cluster identification 
algorithm developed by Fried and Schick. We a180 show that the mechanism responsible 
for non-local percolation allows for the possibility of the propagation of panial order. At 
intermediate impurity concentration a partially ordered phase is found and its structure is 
discussed. 

1. Introduetion 

The present work is devoted to a study of the quench-diluted Baxter-Wu model at 

the absence of dilution by Baxter and Wu [1]. Subsequently Novotny and Landau [2] 
performed a finite-temperature Monte Carlo study of the quench-diluted model and 
verified the validity of the Harris criterion [3]. (Since the exact solution yields a =$> 0, 
the Harris criterion implies that the disorder is relevant-the result found by Novotny 
and Landau.) In the present context we investigate the model’s zero-temperature 
structure by employing the well known relationship between the zero-temperature 
structure of quench-diluted lattice spin models (i.e. a magnetic model with quenched 
non-magnetic impurities) and percolation models [4]. For this relationship the con- 
centration of magnetic spins is interpreted as the concentration of occupied sites in 
the associated percolation model and is denoted by the site occupation probability 
0 ~ p s  1. The percolation clusters are defined as those clusters of spins which, by the 
constraint of energy minimization at zero temperature, must support an ordering in 
one of the degenerate ground states of the pure model (see figure 1). 

Our principal result is to identify the appropriate percolation model characterizing 
the structure of the dilute Baxter-Wu model at zero temperature and to show that the 
resulting model exhibits a novel non-local mechanism for the propagation order. 
Recently it has been shown that the dilute triangular antiferromagnetic q = 3 Potts 
(DTAIP) model [SI and the rigidity percolation model [ 6 ]  also share this key feature 
of non-locality. 

An example of a percolation model exhibiting only local properties is the geometric 
percolation model [7] which is related to the zero-temperature dilute k i n g  ferromagnet 
[4]. For this model the fundamental constraint for the propagation of order is that 
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two occupied lattice sites a and p are constrained to the same percolation cluster if 
these sites are connected by a pairwise bond bm,D. (The allowed bonds follow from 
the particular form chosen for the Ising Hamiltonian.) In magnetic language, this 
constraint means that when the state of the spin (here S,  = + 1  or -1) at site a is 
specified, the state at site P is uniquely determined and the ordered state (in this cas 
e ferromagnetic) is propagated between the two sites. This mechanism of a pairwise 
constraint is local in that the complete complement of information necessary for the 
propagation of order from site a to site p is localized on site a. Therefore the geometric 
percolation model is characterized as a local percolation model. 

In contrast, a percolation model can exhibit non-local properties when the funda- 
mental constraint employed in the propagation of the ordered state is of insufficient 
strength to guarantee that a complete ordering is propagated, though in general it can 
guarantee that at least a partial ordering propagates. An implication of this partial 
propagation of order is that though complete order can still be propagated, the 
constraints responsible for this propagation are now found to be delocalized over 
arbitrarily large regions of the lattice. This delocalization of the constraints necessary 
for the propagation of order characterizes the zero-temperature dilute Baxter-Wu 
model and related percolation models as non-local percolation models. 

A dramatic consequence of this non-local percolation mechanism is that the propa- 
gation of order between two distinct regions of the lattice may be mediated by regions 
that do  not completely share the propagated order [ 5 , 8 ] .  In section 4 the consequences 
of this emergent property are explored for the Baxter-Wu model and at intermediate 
impurity concentrations a zero-temperature phase is found which lacks long-range 
order, yet exhibits a partial ordering. This partially ordered phase is of the same general 
form as that exhibited by the D T A ~ P  model [5] and its generalizations [9]. These models 
were introduced to help in characterizing the percolation properties of the solid 
(ortho-H,),( para-H2)l-p system [ 101 (the spherical para-H, molecules play the role 
of impurities) and may therefore be thought of as discrete state analogoues of this 
dilute quadrupolar system. It is interesting to note that for intermediate para-H, 
concentrations, Harris and Meyer [lo] have observed the onset of large relaxation 
times at low temperature, though they argue that random-field effects imply that no 
finite-temperature phase transition to a quadrupolar glass phase is expected. It is also 
interesting to note that for the rigidity percolation model, Wang and Harris [ l l ]  have 
found what they term ‘a splay-rigid phase’, exhibiting vanishing bulk and shear moduli 
and a non-zero Frank elastic constant. This splay-rigid phase can be thought of as the 
analogue to our partially ordered phase. 

The non-local cluster identification algorithm developed by Fried and Schick [8] 
is employed in Monte Carlo calculations [12] to study the quantitative properties of 
the Baxter-Wu percolation model. This algorithm was developed in response to the 
observation by Adler et a/  [5] that non-local percolation mechanisms violate the 
assumptions of the Hoshen-Kopelman (local) cluster identification algorithm [13]. A 
non-local algorithm has also been developed for the rigidity percolation model [6]. In 
this case, however, the connection rules underlying the cluster identification do  not 
form a closed set and additional rules must be added at each level of iteration. In our 
algorithm, the hierarchy of connection rules truncates after two levels of iteration and 
so allows an exact determination of the non-local percolation clusters. 

This paper is organized as follows: in section 2 we define the dilute Baxter-Wu 
model, in section 3 we expose the percolation mechanism responsible for the non-local 
propagation of order at zero temperature, discuss the associated cluster identification 
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algorithm and present the results of Monte Carlo calculations utilizing this algorithm. 
In section 4 we discuss the qualitative character of the partially ordered phase found 
at intermediate impurity concentrations. 

2. The dilute Baxter-Wu model 

The Hamiltonian for the dilute Baxter-Wu model [2] has the form 

H = - I  1 n,njnkS,SjSk. (1) 
( v k )  

The sum is taken over all elementary triangles of the triangular lattice (i.e. all triangles 
pointing up and down composed of three mutual nearest neighbours). J > 0 is a 
three-spin coupling and the Si = +1 are king spins located at  the vertices of the 
tfiangu!ar !atticel ?here are CO pairlvisc interartinns between !he !sing $ p i x  The site 
occupation variables, ni, have the value n; = 0 if the site is vacant (i.e. occupied by a 
nonmagnetic impurity) and ni = 1 if it is occupied by an king spin. The sites of the 
triangular lattice are taken to be occupied at random with concentration p = (nJ. Since 
the site occupation for this model is random, we may write the statistical weight for 
a given realization { P I ; )  of occupied sites as 

W ( { n j } ,  p )  = p " ~ ( 1  - p )  N - n s  (10) 
where N is the total number of sites on the lattice and n,  = X; ni is the total number 
of occupied sites. We call this a random or uncorrelated percolation model, a charac- 
teristic it shares with such models as the geometric [7], bootstrap [14, 151 and directed 
[16, 171 percolation models. In contrast, when the statistical weight W ( { n , } ,  p )  for 
agiven realization { n i l  is no longer simply a product of statistically independent site 
probabilities, then such a model is called a correlated percolation model [le]. Examples 
of this latter class of models are: the q-state Potts 'thermally' correlated percolation 
model [19] (the bond formulation of this model has been studied in detail by Hu [ZO]), 
the spin-glass model introduced by Adler et nl [21] and the class of quasirandom 
models studied by Fried and Schick [9]. 

It is known from the solution of Baxter and W u  [l]  that for p = 1 a phase transition 
occurs, at a temperature T,, from a high-temperature disordered phase to a low- 
temperature phase which occupies one of the four ordered states shown in figure 1. 
One state corresponds to the ferromagnetic state (all S, = 1) and the three remaining 
ordered states correspond to placing S; = 1 on only one of the three sublattices labelled 
1 ,2 ,3 .  To characterize the structure of the dilute model there are two specific questions 
to consider: the first concerns the location of the critical concentration p .  below which 
long-range order of the type exhibited by the pure model becomes impossible. Here 
one assumes that the transition temperature T J p )  decreases as p decreases from unity 
and for some critical concentration p c ,  TSp, )  = O .  The second question concerns the 
location of the critical concentration p :  helow which the presence of quenched dilution 
causes the system to fragment into a collection energetically decoupled of finite-size 
subsystems. When this decoupling condition is met the free energy for a specific (though 
average) configuration of dilution takes the form 

F = E  F.. (2) 

The ( 6 )  are the free-energy contributions from the statistically independent finite-size 
subsystems, which by virtue of their finite size are non-singular at all temperatures. 
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Figure 1. Here we show a portion of the triangular lattice with its dual, the honeycomb 
lattice, formed by connecting the centres of the triangles. Below are shown the four ordered 
states of the pure Baxter-Wu model. The values of the spin states shown at the vertices 
of the triangles represent the values occupying a given sublattice on the triangular lattice. 
These three sublattices are labelled 1, 2, 3 an the vertices of the triangular lattice. 

This implies that F is non-singular and by implication, no phase transition can occur 
for p < P E .  The dilute nearest-neighbour ferromagnetic Ising model is a special case 
with p c = p : .  For an answer to these questions it is sufficient to consider the zero- 
temperature limit because both p .  and p:  characterize ‘configurational’ properties which 
are not modified at finite temperature since the location of the impurities is quenched. 
We, therefore, turn to a discussion of the percolation models relevant to this zero- 
temperature structure. 

3. A non-local percolation model 

In this section we identify the percolation model which characterizes the propagation 
of the ordered state in the dilute Baxter-Wu model at zero temperature. As discussed 
in the previous section, this percolation model exhibits a percolation transition located 
at a critical concentration p. .  We also briefly describe the associated percolation cluster 
identification algorithm employed in the Monte Carlo study of this percolation model 
and present the results of this study. 

To begin, note that any fully occupied triangle (pointing either up or down) of the 
triangular lattice must, since J > 0, lower its energy by occupying one of the four 
degenerate ground states depicted in figure 1. This implies that a fully occupied triangle 
is the smallest unit on the lattice capable of supporting a well defined ordering. 
Furthermore, as the three-spin interaction only acts on these triangles, the propagation 
of order will only involve the mutual constraints of energy minimization acting between 
these fully occupied triangles. For example, in figure 2 ( a ) ,  the triangle pointing up is 
fixed in one of the ordered states. This leaves a single spin of the triangle pointing 
down (the one enclosed by the square) undetermined. That this remaining occupied 
site must be in the state shown follows trivially from the constraint of energy minimiz- 
ation. A consequence of this result is that fully occupied triangles, which share an 
edge, must be contained in the same ordered state and so, by definition, the sites 
comprising these two triangles are contained in (or coalesce into) the same percolation 
cluster. For a given realization of occupied sites (n,), we can therefore identify those 
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Figure 2. Here we show the three basic configurations of sites relevant to the non-local 
percolation model. Occupied sites are represented by full circles; vacant sites by open 
circles. (a)  Two fully occupied triangles that share an edge. me left-hand triangle i s  placed 
in the state shown, the site enclosed by the square is constrained to the state shown as 
discussed in the text. This configuration constitutes the basic mechanism for the local rule 
for the propagation of order. ( b )  Three fully occupied triangles; the left-hand triangle is 
placed in the state shown and via the local rule order propagates to the site enclosed by 
the square. (e) A configuration of four triangles, with one site vacant, leaving two fully 
occupied triangles. That ordered is incompletely propagated is denoted by the multiple 
values that the two sites enclosed by squares may occupy. 

percolation clusters {CJ which are formed when we employ only this local rule (i.e. 
shared edge between neighbouring triangles). In figure 2 ( b )  we show, using this local 
rule, the ordered state propagating from the triangle on the left-hand side, to the central 
triangle (as in figure 2 ( a ) ) ,  and on to the triangle located on the right-hand side. 

of percolation clusters {CJ would constitute an exact enumeration of the percolation 
clusters embodied by the realization {nil. To see that the local clusters {Cj] do not 
represent the exact percolation clusters, consider the configuration shown in figure 
2(c). For this configuration, since only two of the four triangles shown are fully 
occupied (the open circle represents a vacant site), only these can have spin states 
constrained by the three-spin interaction. With the left-hand triangle placed in the 
ordered state shown, only the single site shared by both the left- and right-hand 
occupied triangles is constrained to a well defined spin state; two of the sites (both of 
which are enclosed by squares) remain undetermined. Note, however, that due to the 
form of the three-spin interaction, the state of the right-hand triangle is not completely 
undetermined. The maximum fourfold degeneracy between the fixed state of the 
left-hand triangle and the allowable states of the right-hand triangle has reduced to a 
twofold degeneracy. Therefore, though complete order has not been propagated 
between the two triangles, a partial ordering has propagated. The possibility of partial 
ordering is the primary mechanism responsible for the non-local propagation of the 
ordered state. 

,FtL^ ,^^^, -..I^ ...~__. L^ ̂ ^I.. _ ~ ^ ^ ^  ̂c--^"---*:.." *I.- ..-A..-"A ^I^.^ *I.^^ .L̂  ^^. 
1, L U G  ,wL.n. L Y l c i  W C l G  L l l c i  W1L'J 111cin_llJ WL pAYy'gPL"1g &'IS W l U C L C U  U L ' l I S  L11G1, LllC bCL 
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We formulate the general constraint for the complete propagation of order between 
clusters as the general 'connection' rule; two clusters C,  and C, coalesce into the same 
percolation cluster C,,, when they share sites on at least two of the three sublattices 
of the triangular lattice (see figure 1). In figure 2 we have shown the elementary 
examples illustrating this rule. For a more complex example consider the site configura- 
tion shown in figure 3 ( a ) .  This configuration consists of two locally defined clusters; 
one to the left and one to the right of the site enclosed by the open square. As the two 

there remains a twofold degeneracy in the ordering of the right-hand cluster. In this 
case the two clusters are distinct. In figure 3(b), again there are two locally defined 
clusters which share two sites on distinct suhlattices. It follows by application of the 
general rule that the ordered state is propagated between these clusters so they coalesce 
to form a single cluster. The important point to note is that the constraints necessary 
for the propagation of the order between these two clusters are not localized to any 
single triangle of occupied sites. These constraints have been delocalized over the two 
clusters and now involve essentially all of the sites that compose the two clusters. This 
condition is exemplified by the fact that the two sites enclosed by squares (i.e. those 
'connections' which are primarily responsible for communicating the order) can occur 
at arbitrary separations from one another. The mechanism for the propagation of order 
is therefore non-local in character. 

To appreciate the ievei of complexity that arises from these non-iocai constraints, 
assume that for a given realization { n c }  we have identified the local clusters {C(}.  These 
clusters form the 'backbone' for the non-local percolation clusters {e!}. In figure 3 we 
have shown an example where two clusters share a pair of sites. It is also possible to 

Clusters share only one site, then With the left-hand c ! u E ! ~ ~  p!aCed in the S Z ! ~  shown, 

Ibl 

- - 
Figure 3. An example of the non-local propagation of order. ( a )  Here two locally defined 
",..".o-" ..,k:^L "L".- *LO "2.- ~"",^-_ rl I.., *h0 Ln..".~ 7L.. InC,~hr"rl  I_ I,,=, is "lrrr,i in ,he 

state shown. Thal order does not propagate is denoted by mulliple values, shown in 
parentheses, near the sites whose states are incompletely determined. ( b )  In this configur- 
ation, as the two clusters now share sites on two distinct sublattices, the conditions ofthe 
general connection rule are satisfied and complete order is propagated. 

L l Y I L r l "  WI..C11 "I.CIC ..a= L.I*.""." ", .ll. l*"-.*. .,.. .-l.-..".." -.I~.-. I" r."--- ... ...- 
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substitute an ‘arbitrary region’ capable of independently supporting an ordered state 
for either one or both of these sites. In figure 4 we illustrate an elementary (though 
typical) substitution configuration composed of three locally defined clusters Cob, C., 
and C,, labelled by the particular ‘connection’ sites they contain. In the absence of 
the connection point labelled c, the cluster C., could communicate only a partial 
ordering (see figure 2(c)) to the clusters C., and C,,, since each share only a single 
site with Cab. That the state of the cluster C,, is in fact completely determined follows 
from the additional constraint imposed on this cluster by the site (labelled c )  shared 
by clusters C., and Cbc. The shared site labelled b between clusters Cab and c b c  

constrains the sublattice of cluster C,, on which site c is located. The partial ordering 
of Cb, is therefore sufficient to constrain one of the two undetermined sublattices of 
Cat, and so, by the general rule, is completely determined. The important point here 
is that cluster C,,, though essential for the propagation of order, remains only partially 
ordered relative to clusters Cab and Cat. 

The idea which underlies the implementation of the non-local algorithm is to 
identify intermediary clusters such as C,, and to replace the connection 

cab -f cm (3: 

by a ‘virtual connection’ 

CO,=, cat. (4) 

This procedure, therefore, reduces all sublattice constriants involving intermediary 
clusters to virtual constraints between pairs of clusters. In [8] a detailed discussion of 
the implementation of this algorithm is given. It is important to note here that these 
‘virtual‘ connections can represent intermediary configurations of arbitrary complexity 
and the resulting ordered and partially ordered structures will exhibit most unusual 
morphologies. 

The non-local algorithm has been implemented on a computer and a Monte Carlo 
[12] study of the associated percolation model has been made. We have implemented 
the procedure using lattices with linear sizes L = 12, 24, 36, 48 and toroidal boundary 

+ 

0 

Figure 4. A site configumtion is shown in which the order is propagated from the cluster 
cab to the cluster Cot. The duster e,,, though essential far the propagation of this order, 
i s  itself not completely determined. (The subscripts on the cluster labels represent the sites 
contained in the specified cluster.) 
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conditions. For each distinct p-value, we have generated 1000 realizations {n,} for 
lattice sizes L = 12-36 and 100 realizations for L = 48. The renormalized site probability 
p'  is defined by 

N 
N ,  

PYP, ( 5 )  

N p  is the number of realizations with at least one percolation cluster of linear size L 
and N ,  is the total number of realizations generated. (Note that such a renormalization 
procedure corresponds to mapping the system of linear size L on to a single site.) The 
percolation order parameter P( p ,  L )  is defined by 

(6) 

N , ( p ,  L )  is the average number of sites contained in the largest cluster on the lattice. 
Standard finite size scaling arguments [ 2 2 ]  can be employed to extract values of the 
critical concentration and critical exponents characterizing the percolation transition. 
We find the specific values: p,=O.755*0.01, U =  1.32*0.05 and p =0.12*0.05. These 
values for the critical exponents are numerically consistent with those of the geometric 
percolation model (with exact values [ 7 ] ;  U = ! ,  p=&),  a result that lends further 
support to recent arguments by Fried and Schick [ 9 ]  concerning the critical properties 
of models of which this Baxter-Wu model is a special case. 

In summary, we have defined the percolation model associated with the zero- 
temperature propagation of order in the dilute Baxter-Wu model. This percolation 
model has been shown to exhibit a non-local mechanism for the propagation of order. 
Monte Carlo calculations employing a non-local cluster identification algorithm have 
been performed and approximate values of the critical concentration p c  and critical 
exponents U and p have been obtained. That non-local percolation structures allow 
the possibility of partial ordering has been noted. We now turn to a detailed consider- 
ation of the consequences of the propagation of this partial ordering. 

4. A partially ordered phase 

In the previous section we have evaluated the critical concentration pc  below which 
the system can no longer support long-range order of the kind found in the absence 
of dilution. In this section we focus on two topics: first, we show that there is an 
additional critical concentration p :  < pc characterizing the 'energetic fragmentation' of 
the system (as discussed in section 2 )  and we discuss the associated percolation model. 
Then we consider the structure of the zero-temperature phase that occupies the 
intermediate concentration range p : < p  < p c ,  and show that it corresponds to a phase 
of partial order. 

To begin, as shown in figure 1, the centres of the triangles on the triangular lattice 
form a honeycomb lattice. We define a prefacing transformation [ 9 ]  from the triangular 
to the honeycomb lattice where a site of the honeycomb lattice is considered occupied 
when the three sites that enclose it are occupied. Since the three sites are occupied at 
random with probability p ,  the occupation probability on the honeycomb lattice is 

(7) 3 P n ' P .  
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The form of the three-spin interaction in equation (1) is such that two fully occupied 
triangles constrain one another energetically only if they share at least one site. This 
implies that energetic contact between fully occupied triangles extends to at most third 
neighbours with respect to the underlying honeycomb lattice (see figure 2 ( a ) ) .  Therefore 
under the prefacing transformation the ‘energy-connectivity’ percolation model appears 
to be equivalent to a first-, second- and third-neighbour geometric percolation model 
on a honecomb lattice. The critical concentration for this percolation model is known 
[41 to be (p&=0.30, and from equation ( 7 )  follows the prediction, p:=0.67. This 
calculation assumes, however, that under the prefacing transformation the site occupa- 
tion on the honecomb lattice is random. However, this distribution is not random for 
a closely related model, as was pointed out by Fried and Schick [9]. The mechanism 
responsible for this non-random (or ‘quasirandom’) property is most easily seen in 
figure 2(b) ,  where we note that the central triangle pointing down must be occupied 
when the two triangles pointing up are fully occupied. Therefore, under the prefacing 
transformation, two second-neighhour sites cannot both be occupied without their 
mutual nearest-neighbour site also being occupied. The analogous configuration with 
the central site vacant would be allowable, however, if the prefaced distribution were 
random. There are further constraints of this type that appear under the prefacing 
transformation, and when taken together, imply that the random distribution approxi- 
mation places a lower bound to the critical concentration: 0 . 6 7 ~ ~ : .  In their study of 
the dilute Baxter-Wu model, Novotny and Landau [ 2 ]  (see also [23] for a similar 
calculation) implicitly account for these constraints by working directly on the 
triangular lattice where they found a value of p:=O.71 iO.01  <pc .  This value for the 
energy-connectivity percolation threshold, as discussed in section 2, also constitutes a 
lower bound on p for the existence of phase transitions in the dilute Baxter-Wu model. 

The critical concentration p: not only signifies the onset of energy-connectivity 
percolation, but also represents a threshold for the percolation of partial order. This 
follows from the fact that the ‘propagation’ of partial order on the honeycomb lattice 
is mediated via occupied third neighbours (see figure 2 ( c ) ) .  This implies that for 
concentrations p > p : ,  there is an extensive cluster of king spins whose allowable 
states, though correlated with one another, are not completely determined by one 
another (see figures 3 and 4). In contrast, for concentrations p >pc  where the system 
exhibits long-range order, there is an extensive cluster of king spins constrained to 
occupy one of the four ordered states of the pure Baxter-Wu model. Therefore, the 
concentration range, p: < p < p c ,  denotes the boundaries of a phase exhibiting a partial 
ordering. 

To explore the nature of this partially ordered phase, recall that in the previous 
section we identified the clusters {CJ. These clusters were determined by application 
of the local constraint that propagates order-only between fully occupied triangles 
which share an edge. The non-local clusters IC,) are defined by the application of the 
general rule to these local clusters. If we use the clusters IC.) to define a percolation 
model then we are led to consider a model previously studied in connection with the 
DTA~P models [ S I  and whose percolation threshold was found to he p:=0.78i0.01. 
(The superscript 1 denotes that we employ only the local clusters {Cj).) It is at this 
threshold that there first occurs a cluster C, E {Cj} which is extensive in size. We know 
that pc<pk, because the threshold pc denotes the lowest concentration where an 
extensive cluster e; E { Cj} first appears (the non-local constraints can only 
enhance the possibility of percolation beyond that exhibited by the purely local model). 
It is important to note that on the interval pE==p<pk, all of the clusters {CJ are of 
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finite size and so at p =pc no singular behaviour originates from those clusters. On the 
other hand, at this concentration, singular behaviour is exhibited by the clusters {ei} 
because this is the percolation threshold for the non-local model. On the interval 
p:Sp<p,,weknowthataslongasweconsiderlengthscales r<((where6ZIp-pc(-”  
for p -pJ the average structure of the model is indistinguishable from the large-scale 
structureintherangep,~p<p:. ForpapLthisisnolongertruebecausethelong-range 
order is now supported by an extensive locally defined cluster, which, through it 
propagates the same ordered state, does so by a qualitatively different mechanism. The 
key point is that energy connectivity percolates forp 3 p: and the Baxter-Wu interaction 
enforces a partial ordering which introduces non-trivial correlations between the 
clusters {Cj}. This effect is clearly exhibited in the elementary example shown in figure 
4. Therefore, throughout the interval p:Gp<pc on scales r-6, we see the system 
predominantly ordered in one of the four degenerate Baxter-Wu ordered states. In 
contrast, on scales r > 6, we observe an amorphous or glassy structure. 

In conclusion, we find that for concentrations p<pc ,  the partially ordered phase 
exhibits a glassy structure. The mesoscopic morphology is characterized by domains 
of size r-(few)e which are partially, though not completely, constrained by one 
another. For p > pc, this glassy structure, though still present on the mesoscopic scale, 
is dominated by a single extensive percolating cluster supporting long-range order. 
Importantly, this percolating cluster is embedded within a background of partially 
ordered finite-sized clusters with whom it shares non-trivial correlations essential for 
the propagation of long-range order (e.g. figure 4). Recently, Adler et al [21] have 
introduced a class of competing interaction king models in which a zero-temperature 
partially ordered phase is realized upon the introduction of correlated dilution. The 
partially ordered phases of their models are, however, of the same general character 
as the one discussed here. It is also interesting to speculate that the partially ordered 
phase represents the zero-temperature limit of a glass phase reached via some finite- 
temperature glass transition (located at T,( p)) from a high-temperature paramagnetic 
phase. The finite-temperature work of Landau and Novotny [2] did not consider 
concentrations small enough ( p  2 0.778) to study the question of a glassy phase directly. 
They did, however, find the interesting result: Tc( p = 0.778)/ T,( p = 1) = 0.5. This value 
seems quite large if one is to find T,( pJ = 0 even with account being made for finite 
size effects. Finite-temperature studies of a related model (the D T A ~ P  model) are 
currently under way [241. 
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